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1. 

Vibration in turbomachinery has been studied since Campbell [1] first published
his pioneering work. Despite over 70 years of research, vibration problems still
plague the community. These problems have been attributed to high cycle fatigue
(HCF) damage in engine components. The problems can occur on many different
engine components, but usually blades are considered the most seriously affected
by vibration problems [2]. The vibration forcing function is usually assumed to
be harmonic. The excitation frequency is in many instances an integer multiple of
the engine speed as represented by the speed lines on a Campbell diagram (see
Figure 1). Resonant vibratory response is possible where a speed line crosses a
resonant frequency line.

Damping can be added to the blade to reduce the resonant vibration levels. The
most common practice is to add friction dampers [3, 4]. Friction damping is often
difficult to characterize and can deteriorate with wear. Other damping research for
engine blades has focused on the use of viscoelastic material. The major challenges
with viscoelastic treatments are the availability of materials that function in the
elevated temperature region and the tendency of the material to creep when
subjected to the centrifugal force field. Vibration absorbers and particle dampers
have also been studied. Jones [5] showed that a damped cantilevered beam located
on the tip of the blade could effectively suppress vibration for a particular mode.
Other promising work is in the area of particle damping [6].

In the past, the approach has been to add damping to a mode to attenuate
resonant response at speed line crossings. This paper presents an alternative view.
Rather than adding damping to a mode or family of modes, a damper absorber
is constructed that tunes itself to the vibration excitation frequency associated
with engine speed. The device can thereby attenuate all resonant responses, as
they are excited. The hollow blade damping device is an internal pendulum
vibration absorber which exploits artificial gravitational (centrifugal) loading to
automatically vary its resonant (absorbing) frequency. Any frequency of vibratory
excitation associated with a particular speed line can be tracked with proper
selection of the pendulum’s moments of inertia. The work is different from
previous research on pendulum absorbers [7] which was intended for a constant
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Figure 1. A typical Campbell diagram.

speed application and suppression of a single mode. Here the utility of the
pendulum absorber for variable speeds and multiple modes is emphasized. The
theoretical development for this device follows.

2. 

Our damping device is in fact a tuned mass damper. This class of devices is also
referred to as damped vibration absorbers, vibration absorbers, or proof-mass-
dampers. Here for brevity, they will be referred to as absorbers. They come in
many forms including mechanical, piezoelectric, magnetic, and acoustic. No
matter the form, the absorber adds an additional degree-of-freedom to a system.
The additional degree-of-freedom is tuned to a system resonant frequency. If the
absorber is undamped, the absorber simply attenuates the original resonant
response, replacing it with a localized resonant response within the absorber. For
a pure harmonic excitation of a particular resonance, this may be adequate. For
a broader band excitation, a damped absorber is usually preferred. The damped
absorber provides reduced response of the absorber degree-of-freedom as well as
attenuation of the system resonance. In addition, damped absorbers have broader
bandwidths making them more tolerant to mistuning than undamped absorbers.

Rather than tuning an absorber to a particular mode, we will use centrifugal
loading to tune the absorber to the component excitation frequency.
Speed-tracking centrifugal pendulums are well known in the literature. They have
been used in the past to absorb torsional vibrations in shafts [8, 9] and for linear
vibration of rotating machinery [10]. Here the centrifugal pendulum is applied to
the engine blade where the vibration problem is considerably more complex. The
tuning properties depend on the pendulum moments of inertia and the blade



m2

m1

L

x

k

F(t)

This reference line
moves with m1

    541

orientation. Our centrifugal pendulum will be damped to provide tolerance to
mistuning.

3.   

The analysis of a pendulum absorber for a rotating, vibrating blade can be
complicated. The derivation is presented in this section in a series of steps. First
the effects of an undamped pendulum on a single-degree-of-freedom system will
be derived. This is a simple problem which demonstrates the basis of the overall
problem. Next, the effects of centrifugal loading on pendulum resonant frequencies
will be derived. Finally a general formulation with a damped pendulum applied
to a damped resonance will be presented. This formulation will allow the effects
of mistuning to be investigated.

3.1. The undamped pendulum absorber

Figure 2 shows a pendulum attached to a spring–mass system. The spring–mass
system represents a vibration mode of an engine blade. The mass of the blade is
represented by m1, and the mass of the pendulum is represented by m2. The blade
mass is excited by a harmonic force with a frequency which varies linearly with
blade rotation rate. Without the pendulum absorber, the mass would resonant
when the engine produces a harmonic force at the natural frequency of the
spring–mass system.

The effects of the pendulum absorber are determined by analyzing the equations
of motion (EOM), which are

(m1 +m2)ẍ+m2Lu� cos u+ kx−m2Lu� 2 sin u=F(t), (1)

ẍ cos u+Lu� + g sin u− ẋu� sin u=0. (2)

These are linearized and Fourier transformed to produce

$−(m1 +m2)v2 + k
−v2/L

−m2Lv2

−v2 + g/L%6X(jv)
u(jv)7=6F(jv)

0 7. (3)

Figure 2. A spring–mass system representing a blade mode. Attached to the mass is an undamped
pendulum absorber.
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The resulting transfer function between the blade mass displacement and the
forcing function is

X
(F/m1)

=
v2

p −v2

[v2
b − (1+ b)v2](v2

p −v2)−bv4 , (4)

where

v2
b = k/m1, v2

p = g/L, b=m2/m1. (5)

The natural frequency of the spring–mass system (representing the blade) when
disconnected from the pendulum is vb. The natural frequency of the pendulum
when disconnected from the mass is vp. The mass ratio is defined as b.

According to equation (4), the vibration of the mass can be cancelled if the
natural frequency of the pendulum exactly equals the forcing frequency. This is
true regardless of the natural frequency of the original spring–mass system. Thus
if the pendulum natural frequency can track along the speed line, the vibrations
for all modes excited by a speed line can be cancelled. In a normal gravitational
field, this is impossible.

3.2. The centrifugal pendulums

The natural frequency of the pendulum absorber can track a speed line in a
centrifugal force field. Shown in Figure 3 is the geometry for this case. The
pendulum absorber is represented by a rigid plate located inside a flat hollow

Figure 3. A pendulum absorber inside a hollow engine blade. The blade is attached to a rotating
disk at an angle. The pendulum rotates out of the plane of the blade. Note: the coordinate system
rotates about the x-axis (the same for Figures 4, 5 and 6).
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Figure 4. A simple model of the centrifugal pendulum absorber. The blade and disk are
represented by a rotating linkage. The pendulum is idealized as a point mass.

blade. The blade is rigidly attached to a rotating disk. The plate is pinned so that
it can rotate about an axis parallel to the line of attachment of the blade to the
disk. The angle between the disk’s axis of rotation and the plane of the blade is
defined as a. The natural frequency of the pendulum will depend upon the blade
angle, a, the rotational speed of the disk, vr, and mass distribution of the
pendulum. In this section, the expression for the natural frequency will be derived.

The complicated geometry of the blade–absorber is simplified in Figure 4. The
blade and disk are represented by a rotating link. For the moment, the link is
assumed to be rigid. The length of the link, r1, is the distance from the disk’s axis
of rotation to the pendulum axis of rotation. The angle between the axes of
rotation is the blade angle, a. The pendulum is idealized initially as a point mass.
The angle between the blade and the pendulum is u. The blade and disk are
rotating about the x-axis at the radial speed of vr. The coordinate system also
rotates about the x-axis at this speed (i.e., the y–z plane rotates about the x-axis).

An expression for the kinetic energy of the pendulum is needed to determine
the natural frequency of the pendulum. The kinetic energy in terms of the time
derivative of the mass position vector, r, is

T=1/2m(ṙ·ṙ). (6)

The position vector is

r= r1er1 + r2er2, (7)

where er1 and er2 are unit vectors defining the orientation of the two links. These
unit vectors are

er1 = j, er2 = cos uj+sin u (cos ak−sin ai), (8, 9)
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where i, j, and k are unit vectors in the x, y, and z directions. The time derivative
of the position vector is

ṙ= r1ėr1 + r2ėr2, (10)

which in terms of cross products is

ṙ= r1{vr iXer1}+ r2{[vr i+ u� ( cos ai+sin ak)]Xer2}. (11)

After simplification, the kinetic energy becomes

T=1/2m[v2
r (r1 + r2 cos u)2 + r2

2u� 2 +v2
r r2

2 sin2 u cos2 a

+ 2vru� cos a(r2
2 + r1r2 cos u)]. (12)

The potential energy term due to the gravitational effect is neglected in this
analysis. Lagrange’s equations of motion are used to generate the EOM, which
after linearization is

u� +v2
r (sin2 a+(r1/r2))u=0. (13)

The natural frequency of the pendulum is easily extracted from the EOM as

vp =vrzsin2 a+(r1/r2). (14)

The pendulum tracks a speed line if the radical of equation (14) equals the order
of the speed line. If the blade angle is fixed, there are two variable design
parameters. The range of one parameter, the distance r1, is limited by the disk
radius and the blade length. The range of the other, the pendulum arm length, r2,
is limited by the available space inside the blade. Therefore, it may not be possible
to design a lumped pendulum to track a desired speed line. Fortunately all
practical pendulums have distributed mass. The mass can be distributed to track
a given speed line despite the space limitations.

Figure 5. A simple model of the distributed centrifugal pendulum absorber.
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The simplified geometry for the distributed pendulum is shown in Figure 5. The
pendulum is represented by a rigid plate rotating about an axis. The plate has
constant thickness and a constant width. The plate length above the rotation axis
is L2 and the length below the axis is L1. The kinetic energy term for the distributed
pendulum is

T=1/2rA g
L2

L1

[v2
r (r1 + r2 cos u)2 + r2

2u� 2 +v2
rr2

2 sin2 u cos2 a

+ 2vru� cos a(r2
2 + r1r2 cos u)]dr2, (15)

where A is the cross-sectional area and r is the mass density of the pendulum plate.
After integrating, applying Lagrange’s equations of motion, and linearization, the
natural frequency of the distributed pendulum is found to be

vp =vrzsin2 a+ r1(I1/I2), (16)

where I1 and I2 are the first and second moments of area of the pendulum plate

I1 =g
L2

L1

r2dr2 =1/2(L2
2 −L2

1), I2 =g
L2

L1

r2
2dr2 =1/3(L3

2 +L3
1). (17, 18)

The area distribution of the pendulum can be adjusted to track a particular speed
line. The shape and thickness of the pendulum can also be varied. The expression
for the natural frequency for this case is given by equation (16).

There are two special cases of the centrifugal pendulum absorber when a is 0°
or 90°. Figure 6 shows the simplified geometry for these cases. When a is 0°, the
pendulum oscillates in plane with the disk–blade rotation. This geometry is

Figure 6. Two special cases of the centrifugal absorber: (a) the pendulum rotates in the same plane
as the rotating disk (a=0°), and (b) the pendulum rotates completely out of the plane of the disk
(a=90°).
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identical to the centrifugal pendulum absorber used for torsion vibration in shafts
[8, 9]. When the blade angle, a, is 90°, the pendulum oscillates entirely out of the
rotational plane. This geometry is identical to the centrifugal pendulum absorbers
for linear motion [10]. Again, the pendulum for each case can be distributed.

3.3. The damped pendulum absorber

The undamped pendulum absorber cancels response due to a harmonic force
if the absorber is exactly tuned to the excitation frequency. That is, if the pendulum
mass can be distributed properly and the excitation is purely harmonic. However
there will be limits in the precision of the pendulum. The excitation may not be
purely harmonic, perhaps being narrow banded. A damped absorber is more
robust for these cases. The engineering tradeoff is that the vibration will be
attenuated rather than cancelled. But an added benefit is that the pendulum itself
will be damped and less prone to fatigue. In this section, the transfer function for
a damped absorber will be derived. Damping in the blade will also be added to
the analysis.

Figure 7 shows the configuration for the damped absorber. The linearized,
Fourier transformed EOM are

$k−(m1 +m2)v2 + jvc1

−v2/L
−m2Lv2

v2
p −v2 + jvc2/m2%6X(jv)

u(jv)7=6F(jv)
0 7. (19)

In these equations, vp is the natural frequency of the pendulum in the centrifugal
field. For simplicity, the inherent damping of the blade is represented by the
viscous damper c1. The equations are also simplified by using the definitions of
the mass ratio and the original spring–mass resonance

$v2
b − (1+ b)v2 + j2zbvbv

−v2/L
−bLv2

v2
p −v2 + j2zpvbv%6X(jv)

u(jv)7=6F(jv)/m1

0 7,
(20)

Figure 7. The damped pendulum absorber applied to a damped mode.
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where

c1/m1 =2zbvb, c2/m2 =2zpvb. (21)

The pendulum’s damping ratio, zp, is referenced to a fixed frequency, vb, not the
variable pendulum frequency.

As the pendulum frequency tracks along the engine speed line, there may be
some precision error signified by a multiplicative factor

vp = hv, (22)

where h is a number near one, which will referred to as the tuning ratio. Normally
the tuning ratio refers to the ratio between the absorber frequency and the system
frequency; here it refers to the ratio between the absorber frequency and the
excitation frequency. Substituting equation (22) into the EOM produces

$1− (1+ b)g2 + j2zbg

−g2/L
−bLg2

g2(h2 −1)+ j2zpg%6X(jv)
u(jv)7=6XST

0 7, (23)

where the following substitutions are also made:

XST =F/k, g=v/vb. (24)

The transfer function between the blade mass displacement and the forcing
function (in non-dimensional form) is

X
XST =

g2(h2 −1)+ j2zpg

[g2(h2 −1)+ j2zpg][1− (1+ b)g2 + j2zbg]− bg4 . (25)

The effects of the absorber can not be determined as clearly as with equation (4).
Comparison can be made to the response of the baseline system (i.e., no absorber),
whose transfer function is

X
XST =

1
1− g2 + j2zbg

. (26)

There are various measures to quantify the effects of the absorber; one is shown
in Figure 8. Here the reduction in peak response for various tuning ratios and
pendulum damping ratios (for b=0·01 and zb =0·25%) is plotted. Notice that
for an undamped absorber (zp =0), small amounts of mistuning severely degrade
the absorber performance. It is primarily for this reason that some amount of
absorber damping is necessary.

3.4. Practical concerns

The centrifugal absorber can be an effective method of vibration suppression,
but there are many concerns about implementation. The first of which is the
practical design of the absorber. A hollow blade is required unless the absorber
can be mounted on the tip of the blade (which creates other problems).

The mechanism for the pendulum damping has not been specified. Some
aerodynamic damping could exist inside the hollow blade. As discussed before,
damping provides a more robust absorber, but it also attenuates the response of
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Figure 8. The reduction in peak response provided by the damped centrifugal absorber over the
baseline system. For this plot, the mass ratio is 0·01 and the blade viscous damping is 0·25% of
critical.

the absorber itself and ameliorates some of the wear due to oscillation. Wear will
eventually detune the absorber and possibly result in failure of the pendulum. If
the failure frees the pendulum from its axis of rotation, a rotating imbalance may
cause even greater problems.

Another limitation is that a single absorber can track only one speed line. For
a given operating range of the engine, there may be many speed lines that excite
the blade. For each of these speed lines, an absorber may be necessary.

Location selection has not been addressed in the preceding derivations.
Presumably there are better locations than others to effect certain modes. The
orientation of the pendulum relative to the vibration mode has also not been
addressed. The pendulum axis is aligned with the blade bending axis, which is ideal
for low order bending modes. The equations for the pendulum natural frequency
can accommodate other orientations. However higher order modes may have
motion in multiple directions. Nowhere in the derivations are these
observability/controllability issues addressed.

4. 

The analytical derivation of a speed tracking pendulum absorber has been
presented. The intended application of the absorber is engine blade vibration
suppression. The derivation shows it is possible to use centrifugal loading to
automatically tune the absorber’s frequency to an engine speed line, so that the
absorber will suppress vibrations excited by that particular speed line. The mass
distribution of the pendulum has to be precisely designed for a given blade angle
and engine order for the absorber to function properly. The pendulum absorber
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should also have some inherent damping to prevent minor mistuning from
rendering the absorber ineffective. Damping in the absorber also attenuates
absorber response. Other practical concerns are also discussed.
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